Prehospital Care of Pediatric Burns

Stacey F. Noel, M.D.
Clinical Assistant Professor, Pediatric Emergency Medicine
University of Michigan Health Care System

Objectives

- Epidemiology
- Burn physiology unique to children
- Initial evaluation and treatment of children
- Special burns: eyes, airways
- Immediate complications: compartments, inhalational toxins
- Non accidental burns
- Safety

Introduction

- 3rd leading cause of accidental childhood death
 - MVCs, drowning
 - 120,000 + kids receive ED burn care annually
 - Mortality rate for children admitted to burn centers < 3%

- <5yo: scald injuries
 - 60-80% of all are scalds
- >5 yo: flame/inhalation injuries
 - Preteen and teen males: Firework injuries

Figure 1: Hospital Emergency Room Visits in 2008 for Burns, by Type of Burn

- Electrical, 2%
- Radiation, 5%
- Chemical, 4%
- Thermal contact, 42%
- Thermal burn from flames, 13%
Mortality

- Highest for young children
- Inhalational injury associated
- Increases >20 TBSA
- One study found 39% mortality in children with >80% TBSA
 - Kids often survive even BAD burns
- *Time to initiation of resuscitation more predictive of survival than extent or severity of burns*
 - *so every child, regardless of the extent and severity of burns, should be aggressively resuscitated...*5

Normal skin

Burn physiology: skin

- Heat denatures and coagulates (cooks) protein
 - Irreversible damage
 - Zone of coagulation
- Surrounding, tissue with decreased perfusion
 - Can be salvaged with early resuscitation
 - Zone of Stasis
- Surrounding, tissue with inflammation & *increased perfusion*
 - Zone of hyperemia
Contact time & temperature cause exponential increase in severity

- Thinner skin: deeper burns
- Less fat: less insulation of deep structures
- Developing cognition & mobility: longer contact time
- High SA:V ratio: heat loss!
Burn depth

Superficial partial thickness

Burn depth
Burn depth

Epidermal/third degree: Does not heal. Causes scarring and contractures.

Dermis: Causes scarring and contractures.

Total Burned Surface Area: adults

- Head: 1%
- Front and back: 5%
- Right arm: 3%
- Left arm: 3%
- Right leg: 9%
- Left leg: 9%
- Back: 5%
- Front: 23%
- Right arm: 3%
- Left arm: 3%
- Right leg: 9%
- Left leg: 9%

Note: The total body surface area is 100%.
Estimating TBSA

- Smaller subglottic diameter, cone-shaped airway
 - More susceptible to airway edema
- Faster respiratory rate, Higher minute ventilation
 - Carbon monoxide, cyanide concentrate
- Usually otw healthy!
 - Arrests are almost always due to airway/respiratory compromise!

Respiratory physiology

- Nasopharynx vascularity removes (or adds) heat from/to inspired gas
 - Lungs see “just right” temperature
- Inspired heat concentrated in airway tissues
- Swelling from direct injury, systemic inflammatory response
 - ARDS
- Obstruction may be sudden

Inhalational injury
Ominous airway signs

- Stridor, voice change, hoarse or laryngitic voice/cry, positional breathing
- Severe naso or oropharyngeal edema
- Recall: <6mos old = obligate NOSE breathers!
- Carbonaceous sputum
- Singed nasal hair?
- Soot in nose or mouth
- Severe facial burns
- Burns greater than 20% TBSA
Cuffed vs. uncuffed?

- Cuffed ETT may be less harmful than thought.
 - Evidence from elective surgical population
 - Retrospective review of 327 cases of operating room endotracheal intubation for general anesthesia in burned children 0-10 years of age over a 10-year period
 - NOT airway burns
- Kids with uncuffed ETTs more likely to have significant air leak requiring immediate reintubation to maintain adequate ventilation
- No significant differences in post-extubation stridor.

Ventilation

- Give supplemental oxygen for all (100% face mask).
 - Especially for closed space flame injuries to decrease CO
- If intubated aim for plateau pressures <35
 - Permissive hypercapnea frequently required
 - Use sufficient PEEP
- 70% will develop VAP
 - elevate the HOB, place NG/OG

Cardiovascular/circulatory

- Before school age, can’t increase cardiac contractility
 - reliant on heart rate, preload to increase cardiac output (CO)
 - Fluid dependent
- Little ones with >15% may develop systemic inflammation with capillary leak
 - burn edema, burn shock
 - Can look like sepsis
If >15-20% TBSA involved shock is likely
- Delay in fluid resuscitation >2 hours significantly increases mortality
- Burn shock = distributive (SIRS) + hypovolemic (loss, edema)
- Pulmonary edema, myocardial edema, conversion of superficial into deep burns, abdominal & limb compartment syndrome

Resuscitation fluids
- Parkland formula
- Total fluid = 4 ml/kg x %TBSA
- Give ½ over 8 hours
 - ½ over 16 hours
- Don't forget maintenance!
 - LR preferred.
 - Colloid shows no benefit.

Additional considerations with fluids
- Aim for normalization of VS
- Goal UOP 0.5-1.0 ml/kg/h for <30 kg
- If >>1.0 ml/kg/h uop DECREASE infusion rate
 - Risk of systemic edema & mortality with overresuscitation
- More fluids if
 - deeper burns, inhalation injury, electrical burns, associated trauma, younger age, delayed resuscitation, and concomitant intoxication
 - AVOID HYPOTHERMIA
Burn care

- Stop the burning process
 - THOROUGHLY irrigate chemical burns, cool scalds
 - NO ICE!
- For very limited TBSA involvement a moist sterile dressing should cover all partial, deep and third degree burns
- For TBSA >5-10% sterile, DRY dressings should be applied
 - To avoid greater heat loss and increase the risk of hypothermia
- KEEP WARM!

Access

- TBSA >5-10% will require IV access for fluids, pain control: PIV preferred
 - Central access needed for 15-20% TBSA.
- Choose an extremity unaffected by burns.
 - At least choose an area without or distal to circumferential burns
 - IO is acceptable, noting great care in securing
- Do not apply circumferential dressings or tape

Pain control

- Intervention #1-Cover the wounds!
- Morphine is 1st line unless significant hypotension
- Attempt to stay within recommended dosing parameters
 - Fluid needs increase with more opiates
Compartment syndromes

- Impaired capillary refill, paresthesia, increased pain, decreased pulses
- Peaks 24 hours after resuscitation
- Circumferential burns
- Extremity, abdomen, chest, orbit

Eye injuries: Irrigation!
Electrical injury: lip

- Cause?
- Risk of severe bleeding days after injury
- Recall electrical burns often more than meets the eye
- Follow path from entrance to exit

Who to transfer to a burn center?

- Age <10 with 10% TBSA
- Age 10 or older with >20% TBSA
- Full thickness >5% TBSA
- Inhalation injury
- Significant burn to face, eyes, ears, genitalia, joints (hands/feet)
- Significant associated trauma
- Children with burns in need of transfer for another reason

Consider transfer if...

- Electrical burns, including lightning injury
- Chemical burns
- Burn injury in patients with significant preexisting medical disorders
- Burn injury in patients who will require special social, emotional, or rehabilitative intervention
 - Concern for abuse
Burn patterns suggesting abuse

- Up to 20% of peds burn admissions nonaccidental
- Most common: scalds under age 4
- cigarette burns, electrical burns, pattern burns

Cigarette burns

Pattern burns
Scalds

- Accident or not?
- Immersion lines and skin fold sparring
- Drips, splatters following gravity
- Listen for consistent story
 - Over time, repeat tellings
 - With injury
 - With developmental age of child

Accidental vs. abusive scalds

Safety: Teachable moment!

- Hot water heaters no hotter than 120°F
- Kitchen, bathroom safety
 - Kettles, pan handles, open flame, burners, oven doors
 - Faucets
- Humidifiers
- Stoves, fireplaces, cigarettes
- Electrical cords
Case

Questions...

- Special Thanks to Dr. Chris Benner, PEM fellow

Sources

Photo credits

1. www.vicburns.org.au
2. www.dbtrust.org.uk
3. www.wisegeek.com
4. www.blowms.nmucreative.com
5. www.allaboutchris.org
7. www.med.kufauniv.com
8. www.sciencedirect.com
9. www.ebmedicine.net
10. www.bdd.miliprint.hr
11. www.tummytime.onslow.org
12. www.seconddegreeburnpictures.com
13. www.reskin.eu